
COP 3223: C Programming (Arrays – Part 2) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Arrays In C – Part 2

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Arrays – Part 2) Page 2 © Dr. Mark J. Llewellyn

Multi-dimensional Arrays In C
• So far the arrays that we have seen have all been one-

dimensional arrays. In other words they contained only a single

value for the size of the array and thus every element in the

array was referenced using a single index (or subscript) value.

• C allows for arrays to have multiple dimensions, i.e., multiple

subscripts.

• Depending on the application and the type of data that needs to

be represented, arrays of any dimension are possible, although

2-dimensional and 3-dimensional arrays are the most common

variants.

• From a visual perspective, a 1-dimensional array appears like a

list of values, a 2-dimensional array appears like a table of

values, and a 3-dimensional array appears like a cube of values.

COP 3223: C Programming (Arrays – Part 2) Page 3 © Dr. Mark J. Llewellyn

Multi-dimensional Arrays In C

a[0] a[1] a[2] a[3] a[4] a[5] a[6]1-dimensional array
int a[7];

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] a[0][5]

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5]

a[2][0]

a[3][0]

a[4][0]

a[5][0]

a[6][0]

a[2][1] a[2][2] a[2][3] a[2][4] a[2][5]

a[3][1]

a[4][1]

a[5][1]

a[6][1]

a[3][2]

a[4][2]

a[5][2]

a[6][2]

a[3][3]

a[4][3]

a[5][3]

a[6][3]

a[3][4]

a[4][4]

a[5][4]

a[6][4]

a[3][5]

a[4][5]

a[5][5]

a[6][5]

2-dimensional array
int a[7][6];

COP 3223: C Programming (Arrays – Part 2) Page 4 © Dr. Mark J. Llewellyn

Multi-dimensional Arrays In C

3-dimensional array
int a[3][5][4];

(not all cells shown)

a[2][0][0] a[2][1][0] a[2][2][0] a[2][3][0] a[2][4][0]

a[1][0][0] a[1][1][0] a[1][2][0] a[1][3][0] a[1][4][0]

a[0][0][0] a[0][1][0] a[0][2][0] a[0][3][0] a[0][4][0]

a[0][1][1]

a[0][1][2]

a[0][1][3]

a[0][4][1]

a[0][4][2]

a[0][4][3]

a[2][4][1]

COP 3223: C Programming (Arrays – Part 2) Page 5 © Dr. Mark J. Llewellyn

Declaring Multi-dimensional Arrays In C

• A 2-dimensional array is declared in C with 2 size (i.e.,

index or subscript) values each placed inside separate

square brackets.

Examples

int a[4][4];

int matrix[2][3];

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0]

a[3][0]

a[2][1] a[2][2] a[2][3]

a[3][1] a[3][2] a[3][3]

matrix[0][0] matrix[0][1] matrix[0][2]

matrix[1][0] matrix[1][1] matrix[1][2]

COP 3223: C Programming (Arrays – Part 2) Page 6 © Dr. Mark J. Llewellyn

Declaring Multi-dimensional Arrays In C

COMMON PROGRAMMING MISTAKE

It is a very common mistake to reference a multiple-subscripted array using common

mathematical notation, which is to separate the indices or subscripts with commas.

Thus, if we declare the following array in C: int myArray[4][8];

A reference to this array must look like myArray[x][y]

where 0 <= x < 4 and 0 <= y < 8

To reference this array as myArray[x,y] would be a syntax error.

COP 3223: C Programming (Arrays – Part 2) Page 7 © Dr. Mark J. Llewellyn

Initializing Multi-dimensional Arrays In C

• C uses what is known as a row-major representation for a 2-d

array. This basically means that the first dimension in an

array definition refers to the number of rows in the array and

the second dimension in the definition refers to the number

of columns in the array.

• Thus, the definition int anArray[2][4]; defines an

array with 2 rows and 4 columns.

• Another way to think of this is that this definition defines

two 1-dimensional arrays each with 4 locations (cells,

indices, or subscripts). It does NOT allocate four 1-

dimensional arrays each with 2 locations.

• Arrays are allocated contiguous memory space in row order.

COP 3223: C Programming (Arrays – Part 2) Page 8 © Dr. Mark J. Llewellyn

Initializing Multi-dimensional Arrays In C

• The implications of the way C “views” multi-dimensional

arrays can be utilized by programmers.

• For example, if we declare int anArray[2][4]; then

we can refer anArray[1], which represents the entire

second row of anArray, which is itself an array. Thus,

anArray[0] and anArray[1] are defined.

• However, since C stores multi-dimensional arrays in row-

major order, this means that there is no way to refer to an

entire column of a 2-d array, since the values in the columns

are not stored contiguously. Thus, anArray[3] in the

above example, would be undefined since technically it

would refer to a row that does not exist. In other words, it

does not represent the third column of anArray.

COP 3223: C Programming (Arrays – Part 2) Page 9 © Dr. Mark J. Llewellyn

Initializing Multi-dimensional Arrays In C

• As with 1-d arrays, there are techniques in C for initializing

multi-dimensional arrays using initializers as well as loops.

• Using initializers with multi-dimensional arrays is very

similar to the way it was done for 1-d arrays, however, more

flexibility is available in the multi-dimensional case.

• Basically, using initializers for a multi-dimensional array

means that you nest one-dimensional initializers.

Example:

int anArray[5] = {0,1,2,3,4}; //1-d case

int aMatrix[2][3] = { {1, 2, 3 },

{4, 5, 6 } }; //2-d case

COP 3223: C Programming (Arrays – Part 2) Page 10 © Dr. Mark J. Llewellyn

Initializing Multi-dimensional Arrays In C
• C provides a variety of ways to abbreviate initializers for multi-

dimensional arrays. Generally speaking, it is easy to get yourself into

trouble using some of these short-hand techniques, because missing

braces or values, can produced unintended results. Therefore, we

will not look at any of these techniques.

• The only other technique we will look at for initializing multi-

dimensional arrays is the technique using loops similar to that we

used for 1-d arrays. This is also the most common way to initialize

multi-dimensional arrays.

• A single for loop is a common way to initialize a 1-d array in C.

Nested loops go hand-in-hand with multi-dimensional arrays, so you

want to get very familiar with how nested loops operate if this is still

a little confusing to you.

• The next two pages are programs that illustrate both techniques for

initializing a 2-d array.

COP 3223: C Programming (Arrays – Part 2) Page 11 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 2) Page 12 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 2) Page 13 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C
• Let’s look at a series of examples that illustrate using multi-

dimensional arrays in C.

• The next example uses a 2-d array and has the user enter the

values into the array in a row by row fashion. Then once the

values are entered into the array, the program will ask the user

to enter a single integer value. Then every cell in the array will

be multiplied by this value and saved in the array (this is scalar

matrix multiplication). Finally, the original array and the

“multiplied” array will be printed side by side.

• We’ll assume the array will be a 3x3 two-dimensional array.

• Notice the way that I nested two for statements independently

inside another for statement so that I could print out the two

matrices side-by-side.

COP 3223: C Programming (Arrays – Part 2) Page 14 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 2) Page 15 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 2) Page 16 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 2) Page 17 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 2) Page 18 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C
• For our next example, let’s look at the problem of adding two

matrices (2-d arrays) together.

• There are many different matrix operations and they have an

extremely wide variety of applications. Not every matrix

operation is defined for all matrices. For example, if A and B are

two matrices, then matrix addition is only defined if the number of

columns in matrix A is equal to the number of rows in matrix B.

The resulting matrix C will then have the number of rows of A

and the number of columns of B.

– Thus, if we have A[3][2] and B[2][4], then matrix addition of A and B is

defined and the result is C[3][4].

– If we have A[4][3] and B[4][2], then matrix addition is undefined for A

and B.

COP 3223: C Programming (Arrays – Part 2) Page 19 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C
Matrix Addition Example:

           

           

g h
a g b i c k a h b j c la b c

i j
d e f d g e i f k d h e j f l

k l

 
             

                      

           

           

7 8
1 7 2 9 3 11 1 8 2 10 3 121 2 3 33 36

9 10
4 5 6 42 454 7 5 9 6 11 4 8 5 10 6 12

11 12

 
              

                        

generic case

specific case

COP 3223: C Programming (Arrays – Part 2) Page 20 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C
Matrix Addition Example:

Most probable outcome of rolling two dice

 

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9
12 3 4 5 6

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

   
   
   
   

    
   
   
   
   

Notice that there are more 7’s than any other number so you have the

highest probability of rolling a total of 7, the next highest probability is

rolling a total of either 6 or 8, and so on.

COP 3223: C Programming (Arrays – Part 2) Page 21 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C
• I want to do something else with this example that I think many of

you are missing or jumping over when you work on your

programming assignments.

• This is the concept of step-wise or modular development and

refinement. More simply put, work on one task at a time…get it

done right…then move on to the next task.

• In this example, let’s first write the portion of the program that will

have the user enter the sizes of the two arrays and determine if the

arrays are compatible for matrix addition.

• This will help us in several ways: (1) we can get this part of the

program working correctly before we ever even consider how to add

the two matrices together, (2) there isn’t any point in reading in the

values for the two arrays if they aren’t compatible for matrix

addition!, (3) it will help you begin to think in terms of functions.

COP 3223: C Programming (Arrays – Part 2) Page 22 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 2) Page 23 © Dr. Mark J. Llewellyn

This works ok, so

we can move on!

COP 3223: C Programming (Arrays – Part 2) Page 24 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C
• Now that we have getting the array dimensions entered and verified

as compatible for matrix addition we can move on to handling the

input of the data for the two matrices.

• For this type of operation, when developing your code, I would

suggest printing out the arrays after they have been input, even

though it is not part of the problem, just so that you can verify that

the data went into the arrays in the correct locations.

• Once you’ve done this, simply comment out the code used to print

the arrays. I wouldn’t erase it, you might want to use it again

somewhere else in the program. When everything is done and tested,

if it is no longer needed, then remove it.

• Write the code to enter the data for one array first and get this

working correctly. Only when this is working correctly do you add

the code to read the data into the second array. Then it is a simple

copy, paste, and modify operation.

COP 3223: C Programming (Arrays – Part 2) Page 25 © Dr. Mark J. Llewellyn

This part of the program

reads in the data values for

array A and prints them out.

When this is working

correctly, copy, paste, and

modify the same code to

read in the values for array

B.

This chunk of code is only

here for testing since it isn’t

part of the output

requirements, it will be

removed when the program

is completed.

COP 3223: C Programming (Arrays – Part 2) Page 26 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 2) Page 27 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C
• Once you know that you can enter the first array’s values and place

them correctly into the array (which you’ve verified by printing out

the contents of the array), simply copy the code and change the

names of the variables to correspond to the second input array.

• For testing purposes, while you’re developing the code, just leave the

lines of code the print out the array in the code. As mentioned

earlier, we might want to use the code again and then we won’t need

to rewrite it.

• This is shown in the next slide.

COP 3223: C Programming (Arrays – Part 2) Page 28 © Dr. Mark J. Llewellyn

This part of the program

reads in the data values for

array B and prints them out.

This should be working fine,

it you made all the editing

changes correctly for the

various variable names.

COP 3223: C Programming (Arrays – Part 2) Page 29 © Dr. Mark J. Llewellyn

As this screen shot shows,

we can now correctly read

in both input matrices and

we know that they are

compatible for matrix

addition.

COP 3223: C Programming (Arrays – Part 2) Page 30 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C
• Now that we know we can enter two matrix addition compatible 2-d

arrays, we move on to the real core of this problem.

• We now need to write the code that will add the two matrices

together according to the generic expression shown on page 19.

• Consider how to code this into nested loops.

           

           

g h
a g b i c k a h b j c la b c

i j
d e f d g e i f k d h e j f l

k l

 
             

                      

We need an out loop to run across all the rows of A; for each row in A we

need to move across all the columns of B; each column “movement” in B

generates a new cell in C.

COP 3223: C Programming (Arrays – Part 2) Page 31 © Dr. Mark J. Llewellyn

Remember that the

number of columns in

A equals the number

of rows in B so either

value could be used

to limit this loop.

COP 3223: C Programming (Arrays – Part 2) Page 32 © Dr. Mark J. Llewellyn

Here is our result matrix. Is it correct?

You should verify the result by hand or

use known test matrices so that you

can verify if the results are correct.

This one is correct!

COP 3223: C Programming (Arrays – Part 2) Page 33 © Dr. Mark J. Llewellyn

Practice Problems
1. Modify the example on page 14 & 15 so that the values to be

entered into the array and the multiplier value are read from an
input file named “arrayinput.dat”.

COP 3223: C Programming (Arrays – Part 2) Page 34 © Dr. Mark J. Llewellyn

Practice Problems
2. Modify the matrix addition problem so that all user entered data is read from

an input file named “matrix addition input.dat”. Note that
for file input, we will assume that the file contains valid input, since there is
no way to prompt a file to reenter invalid data. So all the initial prompting to
make sure that the column dimension of A and row dimension of B are equal
can be removed from the program code.

COP 3223: C Programming (Arrays – Part 2) Page 35 © Dr. Mark J. Llewellyn

Practice Problems
3. Write a C program that uses a 2-d array to store the values in Pascal’s

triangle. Recall from your mathematics background that Pascal’s triangle is a
triangle of values that is formed by creating each element in subsequent rows
as the sum of the two elements in the previous row. Here are the first few
rows of Pascal’s triangle. Have your program generate the first 12 rows.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

COP 3223: C Programming (Arrays – Part 2) Page 36 © Dr. Mark J. Llewellyn

Practice Problems

