Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3223/spr2009/sectionl

School of Electrical Engineering and Computer Science
University of Central Florida

COP 3223: C Programming (Arrays — Part 2 Page 1 © Dr. Mark J. Llewellyn

Multi-dimensional Arrays In C

So far the arrays that we have seen have all been one-
dimensional arrays. In other words they contained only a single
value for the size of the array and thus every element in the
array was referenced using a single index (or subscript) value.

C allows for arrays to have multiple dimensions, i.e., multiple
subscripts.

Depending on the application and the type of data that needs to
be represented, arrays of any dimension are possible, although
2-dimensional and 3-dimensional arrays are the most common
variants.

From a visual perspective, a 1-dimensional array appears like a
list of values, a 2-dimensional array appears like a table of
values, and a 3-dimensional array appears like a cube of values.

’

COP 3223: C Programming (Arrays —Part2) Page2 © Dr. Mark J. Llewellyn g’);

Multi-dimensional Arrays In C

1-dimensional array a[0] | a[1] | a[2] | a[3] | a[4] | a[5] | a[6]
int al[7];
a[0][0] | a[O][1] | a[O][2] | a[O][3] | a[O][4] | a[O][5]
a[1][0] | a[1][1] | a[1][2] | a[1][3] | a[1][4] | a[1][5]
a[2][0] | a[2][1] | a[2][2] | a[2][3] | a[2][4] | a[2][5]
2-dimensional array a[3][0] | a[3][1] | a[3][2] | a[3][3] | a[3][4] | a[3][5]
int a[7][6];
) a[4][0] | a[4][1] | a[4][2] | a[4][3] | al4][4] | a[4][5]
a[5][0] | a[5][1] | a[5][2] | a[5][3] | al3][4] | al3][s]
a[6][0] | a[6][1] | a[6][2] | a[6][3] | al6][4] | al6][5]
COP 3223: C Programming (Arrays — Part 2) Page 3 © Dr. Mark J. Llewellyn

Multi-dimensional Arrays In C

a[o][1][3]
a[o][1][2]
a[o][L][1]
a[0][4][3]
3-dimensional array a[0][0][0] | a[ol[L][o] | a[o][2][0] | a[o][3][0] | a[o]4l[o] L0412
int a[3][5]([4];
(not all cells shown) a[1][0][0] | a[1][1][0] | a[1][2][0] | a[L][3][o] | a[1][4][0] S
a[2][0][0] | af2][][o] | a[2][2][0] | a[2][3][0] | a[2][4]0]
a[2][4][1]

COP 3223: C Programming (Arrays —Part2) Page4 © Dr. Mark J. Llewellyn 6

Declaring Multi-dimensional Arrays In C

A 2-dimensional array is declared in C with 2 size (i.e.,

Index or subscript) values each placed inside separate

square brackets.

Examples a[0][0] | a[0][1] | a[0][2] | a[0][3]
int af[4][4]; |2WM0O]]]| a2l | a]
a[2][0] | a[2][1] | a[2][2] | a[2][3]
a[3][0] | a[3][1] | a[3][2] | a[3][3]
int matrix[2] [3]; | matix0][0] | matrix{o][1] | matrix[0][2]
matrix[1][0] | matrix[1][1] | matrix[1][2]
COP 3223: C Programming (Arrays —Part 2) Page5 © Dr. Mark J. Llewellyn

Declaring Multi-dimensional Arrays In C

COMMON PROGRAMMING MISTAKE

It is a very common mistake to reference a multiple-subscripted array using common
mathematical notation, which is to separate the indices or subscripts with commas.

Thus, if we declare the following array in C: int myArray[4][8];

A reference to this array must look like myArray [x] [y]
where 0 <=x<4and0<=y<8

To reference this array as myArray [x, y] would be a syntax error.

COP 3223: C Programming (Arrays —Part 2) Page6 © Dr. Mark J. Llewellyn

Initializing Multi-dimensional Arrays In C

C uses what Is known as a row-major representation for a 2-d
array. This basically means that the first dimension in an
array definition refers to the number of rows in the array and
the second dimension in the definition refers to the number
of columns In the array.

Thus, the definition int anArray[2][4]; defines an
array with 2 rows and 4 columns.

Another way to think of this is that this definition defines
two 1-dimensional arrays each with 4 locations (cells,
Indices, or subscripts). It does NOT allocate four 1-
dimensional arrays each with 2 locations.

Arrays are allocated contiguous memory space in row order.

’

COP 3223: C Programming (Arrays —Part2) Page7 © Dr. Mark J. Llewellyn g’);

Initializing Multi-dimensional Arrays In C

The implications of the way C “views” multi-dimensional
arrays can be utilized by programmers.

For example, If we declare int anArray[2][4]; then
we can refer anArray[1], which represents the entire
second row of anArray, which is itself an array. Thus,
anArray[0] and anArray[1] are defined.

However, since C stores multi-dimensional arrays in row-
major order, this means that there is no way to refer to an
entire column of a 2-d array, since the values in the columns
are not stored contiguously. Thus, anArray([3] In the
above example, would be undefined since technically it

would refer to a row that does not exist. In other words, it
does not represent the third column of anArray.
#

COP 3223: C Programming (Arrays —Part2) Page8 © Dr. Mark J. Llewellyn g’);

Initializing Multi-dimensional Arrays In C

« As with 1-d arrays, there are techniques in C for initializing
multi-dimensional arrays using initializers as well as loops.

« Using initializers with multi-dimensional arrays is very
similar to the way it was done for 1-d arrays, however, more
flexibility is available in the multi-dimensional case.

« Basically, using initializers for a multi-dimensional array
means that you nest one-dimensional initializers.

Example:

int anArravy[5] = {0,1,2,3,4}; //1-d case
int aMatrix[2][3] = { {1, 2, 3 },
{4, 5, 6 } }; //2-d case

”
COP 3223: C Programming (Arrays —Part2) Page 9 © Dr. Mark J. Llewellyn g);

Initializing Multi-dimensional Arrays In C

C provides a variety of ways to abbreviate initializers for multi-
dimensional arrays. Generally speaking, it is easy to get yourself into
trouble using some of these short-hand techniques, because missing
braces or values, can produced unintended results. Therefore, we
will not look at any of these techniques.

The only other technique we will look at for initializing multi-
dimensional arrays is the technique using loops similar to that we
used for 1-d arrays. This is also the most common way to initialize
multi-dimensional arrays.

A single for loop Is a common way to Initialize a 1-d array in C.
Nested loops go hand-in-hand with multi-dimensional arrays, so you
want to get very familiar with how nested loops operate if this is still
a little confusing to you.

The next two pages are programs that illustrate both techniques for

Initializing a 2-d array.
r

COP 3223: C Programming (Arrays — Part 2) Page 10 © Dr. Mark J. Llewellyn @3'

J initializing a 2d array werzion 1.c

—

L I o N (T Y Sy TR &

14
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
3a
31

Finclude <stdio.h>
Ffdefine BOWS LS
Fsdefine COLIIMMES B
int main()
i
int i, J: loon control srizkblas

,
Y O e Y O L]
-
[Y R I L T

LY

-
-

-

(SO A T % =
-

e e e s]

|:|'\|"|
n
[N

1:”];

(i = 07y i < ROWS: ++44)

for (j = 0; j <= COLUMMS: ++3) {
princf ("¥3d4d", matrix[i] [j]) -

S = “—

LEEL B R I

printcf ("
for

printf ("Y\n") : skip to next row

1 - —

LT T

printf ("\oh\o"™) ;
system ("PATSE™)
retorn O

L - S ¥ — -
— — o i LAl

1 ind=sx

-

LY

LY

LY

S8 CA\Courses\COP 3223 - C Pro... L= 5 [Wede

Preszs any key to continue

e
S1ng 1niIcisSll1==ers
= 0 e 1
TeD,11,13,15%),
P, - R
8,10,12,14,161},
.
s R R
4 B B B B}
For D S D0
- — o e om o
22,555,667 ,13, 22,19}

£ e —_ S —
L AL Ny]
S T, T —_ —
o = L WY L L
— gy R S——
— L L LLL =L L =L L
[— — = £
L — L L il L

COP 3223: C Programming (Arrays — Part 2)

Page 11

© Dr. Mark J. Llewellyn

J initializing a 2d array.c B C\Courses\COP 3223 - C Program... | | (=] |£?-J

— By e ——— S — — - — e = — ——
L il e pr' A] S-Sl S B i L | = s o S M e =Ld L o
—_ — R—— - r- —_ [— - r- —_ — —_
— o L S - R — — o S S - A — — - A By A L
T T = o —_— T R — - e

gdefine ROWS 5
#define COLUMNS 8 Fress any key to continue .

= - I [= T [N FL

18 int maini)
11 {

12 int i, J: loop I -

13 int matrix[ROWS] [COLUMMNS] d=efine Z2-d arravy
14

15 for (i=0; i < ROWS: ++1) { index through rowvs

16 for(3 = 0 37 « COLUOMME: ++3) { 1ndex through column
17 macrix[i] [j] = O: initigalizse c=ll

i8 ¥ =end COLUMNS

12 ¥ =nd ROWS for st
28 printf("Wn™)

1 I

21 for (i = 0; 4i =« ROWS; ++4i) { ind=x throug FOWS

22 for (73 = 0; j <« COLUMNS: ++3) { inds throug ~] 1Am
23 printf("E3d4d", matxrxrix[i]l[d]1):- print c=ell walos

24 Y ASend COLUMNS for stmt

25 printf ("\n") : skip to next ro in printont

26 ¥ =end ROWS for
27

28 printf ("\nW\o™) ;
29 system ("FLAUSE™) ;

38 retorn O:
31 }//end main function

COP 3223: C Programming (Arrays — Part 2) Page 12 © Dr. Mark J. Llewellyn gpj'

Using Multi-dimensional Arrays In C

Let’s look at a series of examples that illustrate using multi-
dimensional arrays in C.

The next example uses a 2-d array and has the user enter the
values into the array in a row by row fashion. Then once the
values are entered into the array, the program will ask the user
to enter a single integer value. Then every cell in the array will
be multiplied by this value and saved in the array (this iIs scalar
matrix multiplication). Finally, the original array and the
“multiplied” array will be printed side by side.

We’ll assume the array will be a 3x3 two-dimensional array.

Notice the way that | nested two for statements independently
Inside another for statement so that | could print out the two
matrices side-by-side.

¢

COP 3223: C Programming (Arrays — Part 2) Page 13 © Dr. Mark J. Llewellyn @3'

uzing a 2d array - page 13.c

A A Fahrna e
6 //Februaz

7

2003

- L br

=1
H
H.
ot
ot
1]
5
[

(%)
4]
H
(a3
[
=
b
w
11
=
=
=

8 #include <stdio.h>
? #define ROWS 3

18
i1
12 int main{()
13 {
14
15
16
17
18
19
28
21
22
23

int i,

for

24 L

25

26 Y
27
28
29
38
31
32
33
34 |

|

Py 3

for

int multiplier;
int matrix[ROWS] [COLUHNE] ;
int productHatrix[ROWS)] [COLUMNS] -

printf ("\n") ;

#define COLUMNS 3

i

A1)

dA1loop control W 13niaes
- —

=2 Lo

L 77 =
LA B B S =

LI
PR L=

printf ("\n") ;
(i =
for

0; i <« ROWS5; ++i) { //index through rows

(3 Oy 4 = COLUMMS: ++1i) { Fiindex through column

printf ("Please enter an integer wvalue for cell [%1d4][%1d4] :4a",
scanf ("F4d", &matrix[i]l[d]) - SAlget

T TTRATT O
=yl T .
e L LY

i,

¥y
ITor SLmG

e ok e
P T o
S skip

e
ROWS for stmt

printf ("Please enter the multiplier walue:n"™);
scanf [("d4d"™,
(1 =
for

Emmltiplier) ;
0; 1 < ROWS; ++1i) {
{3 0; 3 < COLUMNS;
productMatrix[i] []j]

o ~] T P
Ingex Chorondgrn

FOoOwWSs

- OO L LRI

++3) { //index through
matrix[i]l[]d]

* multiplier; //gensrats

for stmt

COP 3223: C Programming (Arrays — Part 2)

Page 14 © Dr. Mark J. Llewellyn

Jj):

m

uging a 2d aray - page 13.c

35 "
36 printf ("\nOriginal Matrix\t Froduct Matrixin");
37 printf ("--——--—-——————- R \n")
i8 for {1 = 0; 1 < ROWS; ++i) { //index through rovs
39 for (j = 0;] < COLUMNS; ++3) { //index through columns 1in matrix
48 printf("%4d" , matrix[i] [i]):
41 }//end COLUMNS for stmt for matrix print
42 printf ("\t\t");//move over for productMatrix
43 for (j = 0;] < COLUMNS; ++3) { //index through columns 1n productMatrix
44 printf("%4d", productMatrix[i][j]):
45 }//end COLUMNS for stmt
46 printf ("\n");
47 }//end ROWS for stmt I
48
49 printf ("\n\n"); =
LA system ("FAUSE") ;
oY | return 0;
52 }//end main function B
53 v
4 | i
npilerl E Hesnurce3| d]]] Compile Ll:ngl D;’/'ﬂ Dehugl @ Find He&ultsl
N Inzert 53 Lines in file Y

a e

COP 3223: C Programming (Arrays — Part 2) Page 15

© Dr. Mark J. Llewellyn

CACourses\COP 3223

for cell
cell
cell

Please enter an
1
Please
2
FPlease
3

integer value

enter an integer value for

enter an integer value for

cell
cell
cell

Please enter integer value for

<
Please
5
Please
|

enter integer» value for

enter integer value for

i cell

cell
cell

Pleaze enter integer value for

s
Please
i
Please
o

enter integer value for

enter integer» value for

Pleaze enter the multiplier» value:

3

Original Matrix Product Matrix

5 6
8 ?

12
21

15
24

18
27

FPress an ke to continue .

COP 3223: C Programming (Arrays — Part 2)

Page 16

bR s s |
DL 8T

Progr... !

[(A1[A1:
[B1C11:
[B1L21:

[110[A1:
[11011:
[11C21:

[21[81:
[21011:
[21[21:

© Dr. Mark J. Llewellyn

BN ChACourses\COP 3223 - C Programming\Spnng 20000\COP 3|~ =

Please enter» an integer value for cell [BI1LCAI1: —
nl
Please enter» an integer value for cell [A1L011:
s —
Pleaze enter» an integer value for cell [AB1L21:
3
Pleaze enter» an integer value for cell [110A1:
<]
Please enter» an integer value for cell [11L011:
5
Please enter» an integer value for cell [11L021:
16
Please enter» an integer value for cell [210A1:
s
Please enter an integer» value for cell [21011:
s
Please enter» an integer value for cell [21L021:
Ea
Please enter» the multiplie» uvalue:
3
ODriginal Matry»ix Product Maty»ix
1 2 3 3 [o
= o [12 15 18
4 H o 21 24 27
Press any key to continuwe - - -
| | .|
COP 3223: C Programming (Arrays — Part 2) Page 17 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C

For our next example, let’s look at the problem of adding two
matrices (2-d arrays) together.

There are many different matrix operations and they have an
extremely wide variety of applications. Not every matrix
operation is defined for all matrices. For example, if A and B are
two matrices, then matrix addition is only defined if the number of
columns in matrix A is equal to the number of rows in matrix B.
The resulting matrix C will then have the number of rows of A
and the number of columns of B.

— Thus, if we have A[3][2] and B[2][4], then matrix addition of A and B is
defined and the result is C[3][4].

— If we have A[4][3] and B[4][2], then matrix addition is undefined for A
and B.

’

COP 3223: C Programming (Arrays — Part 2) Page 18 © Dr. Mark J. Llewellyn @3'

Using Multi-dimensional Arrays In C
Matrix Addition Example:

generic case

abc
def

+1]

specific case

123
456

e
910

1112 L

b

LU

(1+7)+(2+9)+(3+11) (1+8)+(2+10)+(3+12)

(4+7)+(5+9)+(6+11) (4+8)+(5+10)+(6+12)

(a+g)+(b+i)+(c+k) (a+h)+(b+])+(c+l) |
(d+g)+(e+i)+(f+k) (d+h)+(e+])+(f+])

33 36

2 45

COP 3223: C Programming (Arrays — Part 2) Page 19 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C
Matrix Addition Example:

Most probable outcome of rolling two dice

1 2 3 4 5 6 7

2 3 45 6 7 8

3 4 5 6 7 8 9
+[123456]=

4 5 6 7 8 9 10

5 6 7 8 910 11

6 7 8 9101112

Notice that there are more 7’s than any other number so you have the
highest probability of rolling a total of 7, the next highest probability is
rolling a total of either 6 or 8, and so on.

#
COP 3223: C Programming (Arrays — Part 2) Page 20 © Dr. Mark J. Llewellyn @j

Using Multi-dimensional Arrays In C

| want to do something else with this example that I think many of
you are missing or jumping over when you work on your
programming assignments.

This is the concept of step-wise or modular development and
refinement. More simply put, work on one task at a time...get it
done right...then move on to the next task.

In this example, let’s first write the portion of the program that will
have the user enter the sizes of the two arrays and determine if the
arrays are compatible for matrix addition.

This will help us in several ways: (1) we can get this part of the
program working correctly before we ever even consider how to add
the two matrices together, (2) there isn’t any point in reading in the
values for the two arrays if they aren’t compatible for matrix
addition!, (3) it will help you begin to think in terms of functions.

(o

COP 3223: C Programming (Arrays —Part2) Page21 © Dr. Mark J. Llewellyn g’);

[¥] matrix addition example.c

6 include <stdio.h>
7 define MAXECOWS 10
8 define MAXCOLUMNS 10

?
18 nt main()
11
12 int i, Jj; //loop control wvariables
13 int rowsA, columnsA = 0, rowsB, columnsB = 0; //input array dimensions
14 int LA [MAXROWS] [MAXCOLUMME] - JSmatrix 4
15 int B[MAXROWS) [MAXCOLUMNS): /. matrix B
16 int C[HMAXROWS] [MAXCOLUMME] » Srresult matrix O
17
18 do {
19 printf ("Enter the number of rows and columns for matrix A [max wvalue for each
28 gcanf ("%d4%4d", &rowsk, &columnsi);
21 printf ("Enter the number of rows and column=s for matrix B [max wvalue for each
22 scanf (":d:d", &rowsB, &columnsE);
23 if (columnsa '= rowsB) {
24 printf ("Sorry, but for matrix additions the number of columnzs in & musthn™!
25 printf ("equal the number of rows in B... Flease try again!in'\n"):
26 Y//end 1f stmt
27 } while (columnst '= rowsB): //=nd do...vhkil= stmt
28
29
38 brintft"&n&n"};
31 system ("PAUTSE"™) ;
32 retorn 0;
233 ifend main Fonetian
4 | 1 | 3

COP 3223: C Programming (Arrays — Part 2) Page 22 © Dr. Mark J. Llewellyn

1

“—

i ing\Spri - (O
& C\Courses\COP 3223 - C Programming\Spring 2009,COP 3223 Program Files\Arrays In C - Part 2\m...

Enter the number of rows and columns for matrix A [max value for each is 181]: i
2 —
3
Enter the number of rows and columns for matrix B [max value for each is 181]:
4
L
Sorry, hut for matrix additions the number of columns in A must
equal the numher of rows in B... Please try again?

Enter the number of rows and columns for matrix A [max value for each is 1@1:
2
3
Enter the number of rows and columns for matrix B [max value for each iz 181]:
3
2

Press any key to continue . . . _

This works ok, so
we can move on!

COP 3223: C Programming (Arrays — Part 2) Page 23 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C

Now that we have getting the array dimensions entered and verified
as compatible for matrix addition we can move on to handling the
Input of the data for the two matrices.

For this type of operation, when developing your code, | would
suggest printing out the arrays after they have been input, even
though it is not part of the problem, just so that you can verify that
the data went into the arrays in the correct locations.

Once you’ve done this, simply comment out the code used to print
the arrays. | wouldn’t erase it, you might want to use it again
somewhere else in the program. When everything is done and tested,
If it Is no longer needed, then remove It.

Write the code to enter the data for one array first and get this
working correctly. Only when this is working correctly do you add
the code to read the data into the second array. Then it is a simple

copy, paste, and modify operation.
r

COP 3223: C Programming (Arrays — Part 2) Page 24 © Dr. Mark J. Llewellyn gpj'

addition example - third part.c ~ addition example - second part.c

25 printf ("equal the number of rows in B Fleaze try again!in\n");
26 =nd 1f stmt -
27 ¥ WhllE (columnsa !'= rowsB); =nd do...wvhile stmt This p_art of the program
23 reads in the data values for
29 for (i = 0; i <« rowsk; ++i) { rov loop array A and prints them out.
38 for (j = 0; j < columnsk; ++3){ cloumn loop When this is working
31 printf ("Enter Matrix A[%d][3d] walue: ‘“n", i, 3): | correctly, copy, paste, and
32 scanf ("3d", zali][3]): modify the same code to
33 end column loop for stmt read in the values for array
34 1::I1'1tf {("\n"); B.
35 =nd rov loop for stmt
35 E—
37 TESTING CODE - REMOVE AT COMPLETION e el o eale b |
38 for (i = 0; 1 < rowsh; ++i) { rov loop IS chun O co_els.ony,
o . , . ") here for testing since it isn’t
39 for (7 = 0; j < columnsk; ++3) { column loop art of the outout
48 printf ("£3d4", a[i][il): — | part« put:
41 T requirements, it will be
ST oo e e e removed when the program
42 prr‘xtf ("\n"); .
Is completed.
43 =nd rov loop for stmt
44 END TESTING CODE
45
46 printf ("\n\n");
47 system ("PLUSE") ;
418 retorn O;
49 }//end main function
58
COP 3223: C Programming (Arrays — Part 2) Page 25 © Dr. Mark J. Llewellyn 6

B C:\Courses\COP 3223 - € Programming\Spring 2009\COP 3223 Program Files\Arrays In - Part 2te, (= 1 S8

Enter the number of rows and columns for matrix A [max value for each iz 181]1:

2
%nter the number of rows and columns for matrix B [max value for each iz 181]:
?
Enter Matrix ALBILA] value:
%nter Matrix ALBI[1] value:
%nter Matrix ALBIL2] value:
Enter Matrix A[11[8] value:
%nter Matrix A[11[1] value:
Enter Matrix A[11[2] value:
2 3 4
5 6 4

Press any key to continue . . .

F Y

COP 3223: C Programming (Arrays — Part 2) Page 26 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C

Once you know that you can enter the first array’s values and place
them correctly into the array (which you’ve verified by printing out
the contents of the array), simply copy the code and change the
names of the variables to correspond to the second input array.

For testing purposes, while you’re developing the code, just leave the
lines of code the print out the array in the code. As mentioned
earlier, we might want to use the code again and then we won’t need
to rewrite it.

This is shown in the next slide.

#
COP 3223: C Programming (Arrays — Part 2) Page 27 © Dr. Mark J. Llewellyn @j

—

J addition example - third part.c addMDnEHampm-sechdpamcl

468 printf ("%3d", al[il[il):

41 Y//end column loop for stmt

42 printf ("\n")

43 Y/ /end rov loop for stmt

44

45 printf("\n"};

46 ‘/read in matrix B

4% for (i = 0; i < rowsB; ++i) { //rov loop

48 for (i = 0; j <« columnsB; ++3j){ cloumn loop

49 printf ("Enter Matrix B[%d] [%d] walue: Yo", i, d):

Ly 5 scanf ("&d4d", &b[i][Ji]1):

51 Y//end column loop for stmt

L2

53 Y/ end rov leoop for stmt

54 princf ("\n"); This part of the program

LS //TESTING CODE - REMOVE AT COMPLETION reads in the data values for

LB for (i = 0; 1 { rowsB; ++1i) { _ ‘Frow ;:3:?“) array B and prints them out.

: for (3 = 97 3 < columnss: #+3) L /lcolums 1992 | This should be working fine,
printf ("s34", bB[1][J]): . g

59 Y//end column loop for stmt It you made all the edltmg

60 printf ("\n") changes correctly for the

61 Y/ /end row loop for stmt various variable names.

62

63 printf ("\n\n") ;

64 system ("FAUSE"™) ;

65 return 0;

66 }//end main function

I F..;' 1
COP 3223: C Programming (Arrays —Part 2) Page 28 © Dr. Mark J. Llewellyn

& C\Courses\COP 3223 - C Programming\Spring 2009\COP 3223 Program Files\Arrays In C - Part 2\a... (=l [

Enter the number of rows and columns for matrix A [max value for each is 1@1: “-
2 —
3
Enter the number of rows and columns for matrix B [max value for each is 1@1:
]
2
Enter MHatrix ALAIIA] value:
4
Enter Matrix ALIHIL[1] value:
]

Enter Matrix ALIAILZ2] value:
—2

Enter Matrix AL11[8] value:

%nter Matrix A[11[11 value: As this screen shot shows,

Ewter Matrix AM102] value: we can now correctly read

z in both input matrices and
‘11 _g -g we know that they are
compatible for matrix

addition.

Enter Matrix BIAI[A] value:
il

Enter Matrix BIB1[1] value:
Eﬁter Matrix BI[11[8] value:
%nter Matrix BI11[1] value:
Enter Matrix BL21[8] value:
Enter Matrix BI21[1] value:

Lot [y ek
Bodt o =

Press any key to continue . . . ﬂ

COP 3223: C Programming (Arrays — Part 2) Page 29 © Dr. Mark J. Llewellyn

Using Multi-dimensional Arrays In C

Now that we know we can enter two matrix addition compatible 2-d
arrays, we move on to the real core of this problem.

We now need to write the code that will add the two matrices
together according to the generic expression shown on page 19.

Consider how to code this into nested loops.

ll
gl

oh| r

(a+g)+(b+4)+(c+k)](a+h)+(b+j)+(c+|)_
(d+g)+(e+i)+(f+k) (d+h)+(e+])+(f+])

abc |
def

kil'| -

We need an out loop to run across all the rows of A; for each row in A we
need to move across all the columns of B; each column “movement” in B

generates a new cell in C.

#
COP 3223: C Programming (Arrays — Part 2) Page 30 © Dr. Mark J. Llewellyn @j

]

addition example - third part.c | addition example - second part.c

61
62
63
64 / fcompn
65
66
67
68
69
7a
ral
72
73
74
75
76
o'
78
'
88
81
82
83
84
85
86
87
HR

princf ("\n");

O

loop for

rowsh; ++i) { down
;<€ columm=Er +4+3) {1 SSmov
runningSum = 0; ST [
for (k= 0; k < colunn=si; ++k) {
runningSum += a[i] [k] + b[k][i]:

|

S AMOVE

-

\-’:.5:.1— -y -
—a i L ¥ 1

[O A e T

pom > —y
O IoFr SLIMLC

runningSum;

| 3 rOW
c[i][31]

- 1 - =
fENnd Column Ior SLUIMLC

=Ll

oyt

.

L

o -
= I1nc onc

printf ("The summation matrix i=:\n"):

for (1 = 0; i < rowsh; ++i) {
for (] 0; 4 < column=sE;
printf ("$34", c[i]1[il):

1 b - 2 i~
enag CoLWmn Lo0op 1o STIMGT

—libd S L LOLlElL

SArow loop

|
printf ("\n") ;

Y/ /2nd rov loop for stmt

printf ("\n\n") ;
system ("PFAITSE™) :
retorn O;

Y./ [

e S — R
Snd mMailn runcclion

[A1]

++3) { Ficolop

S3 000 oW oL oA Loop
- — —
COLUmn o O 1000
IiaSTI1on
N - = A
I COLWMmIT O 1L oop

Remember that the
number of columns in
A equals the number
of rows in B so either
value could be used
to limit this loop.

-
.....

COP 3223: C Programming (Arrays — Part 2) Page 31

© Dr. Mark J. Llewellyn

N CA\Courses\COP 3223 - C PregramminghSpring 20090COP 3223 Program Files\Arrays In C - Part 2a... I-':' = |iE-J

nter the numbher of rows and columns for matrix A [max value for each is 1@1: -

nter the number of rows and columns for matrix B Imax value for each is 181:

nter Matrix ALAIIA] value:
nter Matrix ALAII1] value:

nter Matrix ALAIILZ2] value:

nter Matrix AL11[A] value:
nter Matrix AL11[1]1 value:

nter Matrix AL11I[2] value:

i 2 3
4 5 6

nter Matrix BIAII[A] value:
nter Matrix BIAII[1] value:
nter Matrix BIL11I[8]1 value:

Eter Matrix BIL11[1]1 value:
gter Matrix BL21[8] value:
1Eter Matrix BL21[1] value:

7?7 B
2 18
11 12
The summation matrix is:
33 306
42 45

This one is correct!

Here is our result matrix.
You should verify the result by hand or
use known test matrices so that you
can verify if the results are correct.

Is it correct?

COP 3223: C Programming (Arrays — Part 2)

Page 32

© Dr. Mark J. Llewellyn

1.

Practice Problems

Modify

the example on page 14 & 15 so that the values to be

entered into the array and the multiplier value are read from an
Input file named “arrayinput.dat”.

BN C:\Courses\COP 3223 - C Programming\Sprin.. BiE=E

Original Matrix

Product Matrix

F Y

i 2 3 L 18 15
4 L b 20 25 3@
?7 8 9 35 48 45
Press any key to continue . . .
{ hr
COP 3223: C Programming (Arrays — Part 2) Page 33 © Dr. Mark J. Llewellyn

Practice Problems

Modify the matrix addition problem so that all user entered data is read from
an input file named “matrix addition input.dat”. Note that
for file input, we will assume that the file contains valid input, since there is
no way to prompt a file to reenter invalid data. So all the initial prompting to
make sure that the column dimension of A and row dimension of B are equal
can be removed from the program code.

g C\Courses\COP 3223 - C Pregramming... =) [

Matrix A -
i 2 3 —
4 5 &6

Matrix B
Y 8
9 14
11 12

The summation matrix is:
33 36
42 45

Press any key to continwe . . .

-
4]

.
COP 3223: C Programming (Arrays — Part 2) Page 34 © Dr. Mark J. Llewellyn §j

Practice Problems

Write a C program that uses a 2-d array to store the values in Pascal’s
triangle. Recall from your mathematics background that Pascal’s triangle is a
triangle of values that is formed by creating each element in subsequent rows
as the sum of the two elements in the previous row. Here are the first few
rows of Pascal’s triangle. Have your program generate the first 12 rows.

11

1 3 31
1 4 6 41

.
COP 3223: C Programming (Arrays — Part 2) Page 35 © Dr. Mark J. Llewellyn §j

Practice Problems

B C:\Courses\COP 3223 - C Programming!Spring 2009\COP 3223 Progrem Fils\Arays In - Part 2P, (=121 B

i 7?7 21 3% I 21 7 1
1 8 28 5% 78 5% 28 8 1
1 % 36 84 126 126 84 36 9 1
1 18 45 128 21@ 252 218 128 45 18 1
1 11 55 165 338 462 462 338 165 55 11 1
1 12 66 220 495 792 924 792 49% 228 66 12 1

Press any key to continue . . .

COP 3223: C Programming (Arrays — Part 2) Page 36 © Dr. Mark J. Llewellyn

